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Abstract

A novel composite coupling is proposed: flexible hyperbolic composite coupling. In addition to enjoying the advantages

of composite materials, the proposed coupling may provide some of the needed damping and can be readily integrated with

a composite drive shaft into a single unit. A mathematical model of the coupling is developed based on the Timoshenko

beam theory using the energy approach and the extended Lagrange’s equations. The corresponding discrete equations of

vibration are derived by using the Galerkin finite element method. The finite element analysis is programmed in MATLAB

and applied to solve for the natural frequencies of the proposed coupling. The dynamic characteristics of the coupling

(axial, torsional and bending natural frequencies) are studied in order to assess the merits and potential of the proposed

coupling.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Flexible couplings transmit torque, while accommodating certain amount of misalignment, from a prime
mover to a driven unit of rotating equipment [1]. Stringent demands are placed on modern flexible couplings,
including: higher torque capacity, higher operational speed (at or post-resonance), accommodation of more
misalignments, less weight and cost. Taking advantages of the unique properties of composite materials (high
specific stiffness and strength, engineering tailoring capability, and high fatigue strength and corrosion
resistance), composite coupling have been introduced in an attempt to achieve the above-mentioned demands
[2,3]. In this paper, a new flexible composite coupling: Hyperbolic Composite Coupling (HCC) is proposed. In
addition to satisfying most of the demands imposed on modern coupling, the proposed coupling can provide
some needed damping [4,5]. Moreover, the HCC can be readily manufactured with a composite drive shaft
into a single integral-coupling-drive-shaft unit [6,7], which enjoys the attractive feature of low manufacturing
and maintenance cost.

The mathematical model of the proposed coupling (HCC) is derived based on the Timoshenko beam
assumptions, using the energy approach and the extended Lagrange’s equations [8]. Then, the discrete
standard equation of vibration ð½M� €Uþ½K�U ¼ 0Þ is derived by using a finite element method. The effect of
two geometric parameters, for two types of fibrous composite materials, on the dynamic characteristics
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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(the torsional, bending and axial natural frequencies) of the proposed coupling is studied. Based on this study,
the potential of the proposed coupling is addressed.

2. Mathematical model

2.1. Constitutive equations and kinematics

The model of the flexible coupling is based on Timoshenko beam assumptions. In addition, the circular
cross-sectional area is allowed to axially translate, rotate, and radially expand/contract. That is, the cross-
sectional circular plane remains a circular plane, but not necessarily perpendicular to the axis of the coupling
(first-order shear theory). Consequently, there are seven components of displacement that define the motion of
a point on the cross-sectional area. Based on the inertial coordinates xyz shown in Fig. 1, where the x-axis
coincides with the axis of the un-deformed coupling (dashed line), the four components of displacements that
define the flexural motion of the cross-section of the coupling are: the transverse displacements, uy and uz, and
the angular rotation about the y and z axes a and b, respectively. The other three displacements are: the axial
displacement, ux, angle of twist, f, and the radial displacement, ur. It is understood that, for the sake of
illustration, the displacements in Fig. 1 are exaggerated.

In the current analysis, we assume that the through-thickness stress, sz and the tangential (hoop) stress, sy,
are negligible. We also assume that the radial strain component, �r, and the inter-laminar shear strain, gry, are
negligible. After two sets of coordinate transformation, from material coordinates to the meridian
coordinates, x̄yz̄ (see Fig. 1), and then to the global inertial cylindrical coordinates [9] xyr, the constitutive
equation for any ply in the laminate of the coupling becomes,
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Fig. 1. Schematic of the different displacements of the hyperbolic coupling.
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For a detailed derivation of the constitutive relation given in Eq. (1), see Appendix A. The strain components
in Eq. (1) are given by

�x ¼ u0x � ðb
0rþ br0Þ cosðyÞ þ ða0rþ ar0Þ sin ðyÞ,

gxy ¼ rf0 þ ðu0z þ aÞ cosðyÞ � ðu0y � bÞ sinðyÞ,

grx ¼ u0r þ ðu
0
z þ aÞ sinðyÞ þ ðu0y � bÞ cosðyÞ. ð2Þ

The prime in Eq. (2) designates partial derivative with respect to x. Note that r is a function of the axial

coordinate, that is, r ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx� Laxial=2Þ=dÞ2 þ 1

q
, where c and d are the two geometric parameters defining the

hyperbolic curve. The parameter c is the minimum radius, Rmin, of the hyperbola.

2.2. Energy expression

The potential energy of the coupling, U , derived using the assumptions introduced in Eq. (1), and where n is
the number of layers (plies), is

U ¼
1

2

Z L

0

Xn

i¼1

Z 2pr

0

Z 0

ri

ðsx�x þ trxgrx þ txygxyÞrdrdy dx.

Substitute Eqs. (1) and (2) into this expression, then after some manipulation, the expression of the coupling’s
potential energy becomes

U ¼
1

2

Z L

0

fKMM ða02 þ b02Þ þ 2KMM ðbb
0
þ aa0Þ þ eKMM ðb

2
þ a2Þ

þ KVV ððu
0
z þ aÞ2 þ ðu0y � bÞ2Þ þ 2KVBða0ðu0z þ aÞ � b0ðu0y � bÞÞ

þ 2KRBðaðu0z þ aÞ � bðu0y � bÞÞ � 2KVAðb
0
ðu0z þ aÞ þ a0ðu0y � bÞÞ

� 2KRAðbu0z þ au0yÞ þ KPPu02x þ KTTf
02
þ KRRu02r

þ 2KPT u0xf
0
þ 2KRT u0rf

0
þ 2KPRu0xu0rgdx. ð3Þ

The kinetic energy of the coupling is

T ¼
1

2

Z L

0

Xn

1

Z 2pr

0

Z 0

ri

rðv2x þ v2y þ v2zÞrdrdydx.

The x; y and z components of the velocities of a generic point on the shaft are, respectively:

vx ¼
q
qt
fux � r cos y sin bþ r sin y sin ag,

vy ¼
q
qt
fuy þ r cos y cos bg,

vz ¼
q
qt
fuz þ r sin y cos ag. ð4Þ

Substituting Eqs. (4) into the kinetic energy expression, and after some manipulation, we obtain

T ¼
1

2

Z L

0

mð _u2
x þ _u2

y þ _u2
z þ _u2

r Þ þ Ið2 _f
2

s þ _as þ
_bsÞ

þ 2I _yð_a sin b cos a� _b sin a cos bÞdx, ð5Þ

where, _y ¼ Oþ _f, with O as the spinning speed of the shaft, and is assumed constant. The dot over the letter
signifies differentiation with respect to time, t. The expressions for the different stiffness, K , mass, m, and mass
moment of inertia, I , in the potential and kinetic energy expressions can be found in the Appendix B. It is
important to note that, because the radius and the fiber angle orientations vary with x, these stiffness and mass
expressions are functions of the axial coordinate, x.
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2.3. Mathematical model

The partial differential equation governing the dynamics of the HCC is derived from the extended
Lagrange’s equation [9]:

qL̂

qqi

�
q
qX

qL̂

qq0i

 !
�

q
qt

qL̂

q _qi

 !
¼ 0; 0oxoL,

and imposing the boundary conditions: qi ¼ 0, or qL̂=qq0i ¼ 0 at both ends (x ¼ 0, and x ¼ LÞ. In Lagrange’s
equation and the accompanied boundary conditions, L̂ ¼ T̂ � Û , where L̂ is the Lagrangian density, and T̂

and Û are the kinetic energy density and the potential energy density, respectively. The generic displacements
qi; i ¼ 1; 2; . . . ; 7, stand for the seven displacement components, which completely define the motion of a point
on the coupling. These displacements are ux; ur;f; uy; uz; b and a. By substituting Eqs. (3) and (5) into
Lagrange’s equation, for each displacement component, we obtain, after some manipulation:

ðKPPu0xÞ
0
þ ðKPRu0rÞ

0
þ ðKPTf

0
Þ
0
¼ m €ux,

ðKPRu0xÞ
0
þ ðKRRu0rÞ

0
þ ðKRTf

0
Þ
0
¼ m €ur,

ðKPT u0xÞ
0
þ ðKRT u0rÞ

0
þ ðKTTf

0
Þ
0
¼ I €fþ Ið€ab� b€aþ abð _b

2
� _a2ÞÞ, ð6Þ

fKVV ðu
0
y � bÞ � KVBb

0
� KRBb� KVAa0 � KRAag0 ¼ m €uy,

fKVV ðu
0
z þ aÞ þ KVBa0 þ KRBa� KVAb

0
� KRAbg0 ¼ m €uz,

fKMMb0 þ KMMb� KVBðu
0
y � bÞ � KVAðu

0
z þ aÞg0 � KMMb0 � eKMMb

� KVBb
0
� KRBðu

0
y � 2bÞ � KVAa0 þ KRAu0z þ KVV ðu

0
y � bÞ

¼ Ið €b� 2O_a� 2 _f_a� €faÞ, ð7Þ

fKMMa0 þ KMMaþ KVBðu
0
z þ aÞ � KVAðu

0
y � bÞg0 � KMMa0 � eKMMa

� KVBa0 � KRBðu
0
z þ 2aÞ þ KVAb

0
þ KRAu0y � KVV ðu

0
z þ aÞ

¼ Ið€aþ 2O _bþ 2 _f _bþ €fbÞ,

and the boundary conditions are given by

ux ¼ 0 or ðKPPu0xÞ þ ðKPRu0rÞ þ ðKPTf
0
Þ ¼ 0,

ur ¼ 0 or ðKPRu0xÞ þ ðKRRu0rÞ þ ðKRTf
0
Þ ¼ 0,

f ¼ 0 or ðKPT u0xÞ þ ðKRT u0rÞ þ ðKTTf
0
Þ ¼ 0,

uy ¼ 0 or fKVV ðu
0
y � bÞ � KVBb

0
� KRBbx� KVAa0 � KRAaxg ¼ 0,

uz ¼ 0 or fKVV ðu
0
z þ aÞ þ KVBa0 þ KRBax� KVAb

0
� KRAbxg ¼ 0,

b ¼ 0 or fKMMb0 þ KMMb� KVBðu
0
y � bÞ � KVAðu

0
z þ aÞg ¼ 0,

a ¼ 0 or fKMMa0 þ KMMaþ KVBðu
0
z þ aÞ � KVAðu

0
y � bÞg ¼ 0. ð8Þ

Eqs. (6) and (7) are coupled partial differential equations that represent the axial, radial, torsional and flexural
vibration of the proposed coupling. The axial, radial and torsional Eqs. (6) are completely coupled. The
transverse and rotational motions, of the flexural vibration of the coupling, Eq. (7), are also completely
coupled. Both the axial–radial–torsional vibration, Eq. (6), and the flexural vibration, Eq. (7), are coupled
through nonlinear inertial terms. In the current analysis, these nonlinear inertial terms are ignored, which
uncouples the axial–radial–torsional vibration and the flexural vibration. The coupled equations of motion,
Eqs. (6) and (7), subject to the boundary conditions, Eq. (8), constitute the mathematical model of the
proposed coupling. These equations are solved to obtain the fundamental axial, torsional and bending natural
frequencies of the coupling by using Galerkin finite element method coded in MATLAB. The solution is
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obtained for the special case where the nonlinear inertial terms and the spin, O, are ignored. The effects of the
nonlinear terms and the spin will be studied in a future work.

2.4. Discrete equation of motion

Over each element the generalized displacements are expanded in terms of the shape functions and the nodal
displacements:

uxðx; tÞ ¼
X

nn

NiðxÞUxi
ðtÞ; urðx; tÞ ¼

X
nn

NiðxÞUri
ðtÞ,

fðx; tÞ ¼
X

nn

NiðxÞFiðtÞ,

uyðx; tÞ ¼
X

nn

xiðxÞUyi
ðtÞ; uzðx; tÞ ¼

X
nn

xiðxÞUzi
ðtÞ,

aðx; tÞ ¼
X

nn

ZiðxÞAiðtÞ; bðx; tÞ ¼
X

nn

ZiðxÞBiðtÞ, ð9Þ

where Uxi
;Uri

;Fi;Uyi
;Uzi

;Ai, and Bi are the nodal displacements, and NiðxÞ; xiðxÞ, and ZiðxÞ are the shape
functions. For the current analysis, the cubic Hermite shape functions [10] with nn ¼ 4 are adopted for all
three shape functions.

The element equation,

Me €Ue þ KeUe ¼ be,

whereMe and Ke are the element mass and stiffness matrix, respectively, and be is the boundary force vector, is
derived following the Galerkin finite element method [10]. First, the approximate, expanded solutions of the
seven generalized displacements, Eq. (9), are substituted into the equations of motion, Eqs. (6) and (7),
rendering the residuals RjðRux;Rur;Rj;Ruy;Ruz;Rb and Ra). Second, the integrals of the weighted-residual are

enforced to vanish over the element, that is;
R h

0 wjðxÞRj dx ¼ 0, where wjðxÞ are the weighting functions. In the

Galerkin finite element method these weighting functions are taken as the shape functions: NðxÞ for Rux;Rur,
and Rj; xðxÞ for Ruy and Ruz; and ZðxÞ for Rb and Ra. Finally, the weighted-residual equations are integrated

by part to yield the corresponding weak forms, which upon rearrangement and taking the appropriate

boundary conditions into consideration result in the element equation Me €Ue þ KeUe ¼ be, where

Me ¼

Mx 0 0 0 0 0 0

0 Mr 0 0 0 0 0

0 0 Mp 0 0 0 0

0 0 0 MM 0 0 0

0 0 0 0 MM 0 0

0 0 0 0 0 JJ 0

0 0 0 0 0 0 JJ

2666666666664

3777777777775
,

and

Ke ¼

Kxx Kxr Kxp 0 0 0 0

Kxr Krr Krp 0 0 0 0

Kxp Kxr Kpp 0 0 0 0

0 0 0 þKuu 0 �Kub �Kua

0 0 0 0 þKuu �Kua þKub

0 0 0 �Kbu �Kau þKbb �Kba

0 0 0 �Kaua þKbu þKba þKbb

2666666666664

3777777777775
.
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Each element of the block matrices Me, and Ke is a 4� 4 matrix, and the expressions of these elements are
given in Appendix B. Notice that, because of the negligence of the nonlinear inertial terms, the
axial–radial–torsional (the top-left 3� 3 block matrices) and the flexural (the bottom-right 4� 4 block
matrices) of the stiffness matrix ½K �e are uncoupled. It is understood that the discrete equation of motion is
recovered upon the assembly of all element equations.

3. Results and discussion

The finite element program developed for the axial–radial–torsional and flexural vibration of the composite
coupling is applied to determine the fundamental axial, torsional and bending frequencies of specific
couplings. Two generic fibrous composite materials are examined: carbon/epoxy and carbon/polyurethane.
A ½�yf ðxÞ� laminate is considered for the coupling, where yf is the fiber angle orientation. It is a function of the
axial coordinates x, since the fibers are laid down along the geodesic lines of the hyperboloid (Appendix C).
The material properties and dimensions of the two coupling under investigation are given in Table 1. Because
this coupling has been produced in the USA, the unit of length adopted throughout the paper is in an inch
ð1 in ¼ 2:54 cmÞ.

In the flexible composite coupling examples, the carbon fiber and the epoxy are assumed to be elastic, and
the polyurethane (matrix material) is assumed to be viscoelastic with a complex shear modulus. Because of the
large difference in the moduli of the carbon and polyurethane, it is reasonable to assume that only E2 and G23

will demonstrate substantial viscoelastic behavior [11]. Consequently, both E2 and G23 are assumed complex;
that is: E2 ¼ E02ð1þ ZiÞ and G23 ¼ G023ð1þ ZiÞ. The values of E02 and G023 are given in Table 1, and a quoted
value of the material damping factor, Z ¼ 0:1, is adopted [12].

3.1. Carbon/epoxy results

The fundamental axial, torsional and bending natural frequencies as a function of Rmin, for the specific case
of Laxial ¼ 6 in, are displayed in Fig. 2. Also, shown in Fig. 2 are the corresponding finite element results from
ANSYS. For the ANSYS results, a mesh of 16� 16 (16 circumferential element �16 axial element) shell99
composite elements was adopted. All the results shown are for the cantilevered case, that is, using fixed–free
boundary conditions. The results of the developed finite element program are in close agreement with the
ANSYS results. Initially a stiffening effect is observed in the torsional and bending modes as Rmin is decreased
from the cylindrical shape ðRmin ¼ Rmax ¼ 3 inchesÞ; this is followed by a monotonic softening effect as Rmin is
further decreased. The axial stiffness (natural frequency) continues to drop as Rmin decreases. The jump
phenomenon observed in the axial natural frequency is attributed to the eigenvalue curve veering phenomenon
[13,14], as explained in Appendix D.

The effect of the coupling length ðLaxialÞ and Rmin on the fundamental torsional, bending and axial natural
frequencies of the coupling is displayed, in Fig. 3. In general, the natural frequencies of all three modes
increase as the coupling is shortened (Figs. 3a–c), and as Rmin increases (Figs. 3d–f). At small Rmin, however,
Table 1

Geometric and material properties of the composite coupling

Material properties Carbon/epoxy Carbon/polyurethene

Maximum radius, cm (in) 7.62 (3) 7.62 (3)

Thickness, mm (in) 0.0508 (0.02) 0.0508 (0.02)

E1, GPa (Msi) 132 (19.2) 131 (19)

E2, GPa (Msi) 10.8 (1.56) 0.21 (0.03)

G12, GPa (Msi) 5.56 (0.82) 0.083 (0.012)

G23, GPa (Msi) 3.38 (0.49) 0.028 (0.004)

v12 and v23 0.24 and 0.59 0.4 and 0.8

r, kg/m3 (lb s2/in4) 1540 ð1:44� 10�4Þ 1475 ð1:37� 10�4Þ
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Fig. 2. The variation of the fundamental natural frequencies with Rmin: ——— axial, ����� torsional, ...... bending, � ANSYS

ðRmax ¼ 3 in ¼ 7:62 cm, and Laxial ¼ 6 in ¼ 15:24 cmÞ.
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the bending natural frequency exhibits an optimum value of Laxial at which a maximum bending frequency
occurs, and below which the bending frequency continues to drop as the coupling gets shorter (Fig. 3b).
A peak torsional (Fig. 3d) as well as bending (Fig. 3e) natural frequency is also depicted as Rmin approaches
Rmax; that is, as the hyperbolic coupling converges to a cylinder.

3.2. Carbon/polyurethane results

The fundamental axial and bending natural frequencies as a function of Rmin, for the specific case of
Laxial ¼ 6 in, are displayed in Fig. 4. Also, shown in the figure are the corresponding results from ANSYS. For
the ANSYS results, a mesh of 16� 8 (16 circumferential element � 8 axial element) shell99 composite
elements were adopted. All results shown are for the cantilevered case, that is, fixed-free boundary conditions.
As Rmin approaches Rmax and the hyperbolic coupling converges to a cylinder, the flexural natural frequency
predictions exhibit a sharp peak, which is not observed in the ANSYS results (Fig. 4b). Aside form this
discrepancy, the ANSYS and the developed finite element results show ‘‘reasonable’’ agreement. In practice, in
order to achieve the needed axial and flexural flexibility of the coupling, Rmin is confined to values less than
2 in—for Rmax ¼ 3 in. For this practical range of Rmin ðRmino2 inÞ there is reasonable agreement between the
results of ANSYS and the developed program (Fig. 4), and consequently the following parametric study is
confined to this range of Rmin.

The effect of the coupling length ðLaxialÞ and Rmin on the fundamental torsional, bending and axial natural
frequencies and the corresponding damping factors of the coupling are demonstrated in Fig. 5. Observe that
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Fig. 3. The effect of the Laxial and Rmin on the fundamental natural frequencies: (a) Laxial on the torsional, (b) Laxial on the bending,

(c) Laxial on the axial, —— Rmin ¼ 1 in, —— Rmin ¼ 2 in, — �— �— Rmin ¼ 2:95 in, - - - - Rmin ¼ 3 in, (d) Rmin on the torsional, (e) Rmin on

the bending, (f) Rmin on the axial. —— Laxial ¼ 1 in, —— Laxial ¼ 2 in, — �— �— Laxial ¼ 4 in.
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Fig. 4. The variation of the fundamental axial and bending natural frequencies with Rmin: (a) axial, (b) bending. ——— finite element,

� ANSYS.
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Rmin is confined to values less than 2 in. In general, the fundamental natural frequencies of all three modes
increase as Rmin increases (Figs. 5a–c). In the range of Laxial and Rmin covered in this paper, as Laxial decreases,
the torsional natural frequency increases (Fig. 5c), and the bending and axial natural frequencies increase then
decrease indicating the existence of optimum lengths, Laxial, at which a maximum bending frequency and a
maximum axial frequency occur (Figs. 5a,b). This phenomenon is also depicted for carbon/epoxy hyperbolic
couplings (Fig. 3). The effect of Rmin and Laxial on the damping factor (Figs. 5d–f), in general, is insignificant.
It should be pointed out that for an effective design of a flexible coupling, a high torsional natural frequency
(stiff in torsion) and a relatively low bending and axial frequencies (flexible in bending and axial deflection)
are required. The results in this preliminary analysis indicate that for Rmin ¼ 1 in and Laxial ¼ 1 in a high
torsional natural frequency (Fig. 5c) and low bending and axial frequencies (Figs. 5a,b) can be achieved.
The jump phenomenon experienced with the axial and torsional frequencies and the corresponding
discontinuity in the damping factors is attributed to the coupling among the different modes (curve veering) as
explained earlier.

4. Conclusion

A novel coupling is presented: a flexible hyperbolic composite coupling. In addition to enjoying the
advantages of composite materials, the proposed coupling can be readily integrated with composite drive shaft
into a single unit. Moreover, the proposed coupling may provide some of the needed damping. The relevant
dynamic characteristics of the coupling are investigated in this work. Specifically, the effect of two geometric
parameters (minimum radius and axial length) and two carbon fibrous composite materials (carbon/epoxy and
carbon/polyurethane) on the axial, torsional and bending natural frequency of the coupling is studied. These
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Fig. 5. The effect of Laxial and Rmin on the fundamental natural frequencies and the corresponding damping factors: (a) bending natural

frequency, (b) axial frequency, (c) torsional frequency, (d) bending damping factor, (e) axial damping factor, (f) torsional damping factor.

——— Laxial ¼ 1 in, - - - - - Laxial ¼ 2 in; . . . . . . Laxial ¼ 3 in.

H. Ghoneim, D.J. Lawrie / Journal of Sound and Vibration 301 (2007) 43–5852
three characteristics are relevant because an effective coupling is one that acquires a high torsional natural
frequency (stiff in torsion) and relatively low bending and axial frequencies (flexible in bending and axial
deflection). A mathematical model of the coupling is developed based on the Timoshenko beam theory using
the energy approach. The corresponding discrete equation of vibration are derived by using the Galerkin finite
element method. The finite element analysis is programed in MATLAB and applied to solve for the natural
frequencies of the proposed coupling. The results, in general, indicate that for the proposed coupling to be
viable, small Rmin and axial length, Laxial, are needed. Implementation of the proposed coupling with a
composite shaft into an integrated driveshaft-coupling unit, and a study of the dynamic and strength
characteristics of the integrated unit, is the subject of future work.
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Appendix A. Constitutive equation in global coordinates

The constitutive equation of the fibrous composite material in the meridian coordinates of the surface of the
hyperbola can be expressed as
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tyz

txz

txy

0BBBBBBBBB@

1CCCCCCCCCA
¼

Q11 Q12 Q13 0 0 Q16

Q12 Q22 Q23 0 0 Q26

Q13 Q23 Q33 0 0 Q36

0 0 0 Q44 Q45 0

0 0 0 Q45 Q55 0

Q16 Q26 Q36 0 0 Q66

26666666664

37777777775
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�z

gyz
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gxy

0BBBBBBBBB@

1CCCCCCCCCA
. (A.1)

Taking into consideration the assumption that both the through-thickness meridian stress, sz, and the hoop
stress, sy, are negligible, the corresponding strain components �z and �y can be eliminated from Eq. (A.1),
giving:

sx

tyz

txz

txy

0BBB@
1CCCA ¼

Q11 0 0 Q16

0 Q44 Q45 0

0 Q45 Q55 0

Q16 0 0 Q66

2666664

3777775
�x

gyz

gxz

g
xy

0BBBB@
1CCCCA. (A.2)

where

Q11 Q16

Q16 Q66

24 35 ¼ Q11 Q16

Q16 Q66

" #
�

Q12 Q13

Q26 Q36

" #
Q22 Q23

Q23 Q33

" #�1
Q12 Q26

Q13 Q36

" #
.

The stress and strain vectors in Eq. (A.2) can be transformed to global coordinates ðxyrÞ, via the following
transformation:

sx

sr

try

txr

txy

0BBBBBB@

1CCCCCCA ¼
m2 0 2mn 0

n2 0 �2mn 0

0 m 0 �n

�mn 0 m2 � n2 0

0 n 0 m

26666664

37777775
sx

tyz

txz

txy

0BBB@
1CCCA,

and

�x

�r

gry

gxr

gxy

0BBBBBB@

1CCCCCCA ¼
m2 0 mn 0

n2 0 �mn 0

0 m 0 �n

�2mn 0 m2 � n2 0

0 n 0 m

26666664

37777775
�x

gyz

gxz

gxy

0BBBB@
1CCCCA. (A.3)
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In Eq. (A.3), m ¼ cosðzÞ and n ¼ sinðzÞ, where z is the angle between the global coordinate x and the meridian
coordinate x. Substituting Eq. (A.3) into Eq. (A.2) gives

sx

sr

try

txr

txy

0BBBBBB@

1CCCCCCA ¼
eQ11

eQ13
eQ14

eQ15
eQ16eQ31

eQ33
eQ34

eQ35
eQ36eQ41

eQ43
eQ44

eQ45
eQ46eQ51

eQ53
eQ54

eQ55
eQ56eQ61

eQ63
eQ64

eQ65
eQ66

266666664

377777775

�x

�r

gry

gxr

gxy

0BBBBBB@

1CCCCCCA, (A.4)

where

½ eQ� ¼
eQ11

eQ13
eQ14

eQ15
eQ16eQ31

eQ33
eQ34

eQ35
eQ36eQ41

eQ43
eQ44

eQ45
eQ46eQ51

eQ53
eQ54

eQ55
eQ56eQ61

eQ63
eQ64

eQ65
eQ66

26666666664

37777777775

¼

m2 0 2mn 0

n2 0 �2mn 0

0 m 0 �n

�mn 0 m2 � n2 0

0 n 0 m

2666666664

3777777775

Q11 0 0 Q16

0 Q44 Q45 0

0 Q45 Q55 0

Q16 0 0 Q66

26666664

37777775
m2 n2 0 �mn 0

0 0 m 0 0

2mn �2mn 0 m2 � n2 0

0 0 �n 0 m

2666664

3777775.

Since we assume that �r ¼ gry ¼ 0, they can be removed from the global strain vector together with the
corresponding columns (the second and third) of the stiffness matrix in Eq. (A.4), resulting in the constitutive
relation given in Eq. (1).

Appendix B

B.1. The stiffness and mass expressions

KPP ¼
Xn

j¼1

pðr20 � r2i Þj
eQ j
11; KPT ¼

Xn

j¼1

2p
2
ðr30 � r3i Þj

eQ j
16; KPR ¼

Xn

j¼1

pðr20 � r2i Þj
eQ j
15,

KTT ¼
Xn

j¼1

p
3
ðr40 � r4i Þj

eQ j
66; KTR ¼

Xn

j¼1

2p
3
ðr30 � r3i Þj

eQ j
56; KRR ¼

Xn

j¼1

pðr20 � r2i Þj
eQ j
55,

m ¼
Xn

j¼1

rjpðr
2
0 � r2i Þj ; I ¼

Xn

j¼1

rj

p
4
ðr40 � r4i Þj ; I ¼ 2I ,

KMM ¼
Xn

j¼1

p
4
ðr40 � r4i Þj

eQ j
11; KVV ¼

Xn

j¼1

p
2
ðr20 � r2i Þjð

eQ j
55 þ

eQ j
66Þ,

KVA ¼
Xn

j¼1

p
3
ðr30 � r3i Þj

eQ j
16; KVB ¼

Xn

j¼1

p
3
ðr30 � r3i Þj

eQ j
15,
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KMM ¼ ðl
2x=2Þ

Xn

j¼1

pðr20 � r2i Þj
eQ j
11;

eKMM ¼ ðl
4x2Þ

Xn

j¼1

p lnðr0=riÞj
eQ j
11,

KRA ¼ ðl
2xÞ

Xn

j¼1

pðr0 � riÞj
eQ j
16; KRB ¼ ðl

2xÞ
Xn

j¼1

pðr0 � riÞj
eQ j
15.

B.2. The block mass and stiffness matrices’ components of the finite element analysis

Mxij ¼Mrij ¼

Z h

0

mðxÞNiNj dx,

Mpij ¼

Z h

0

IðxÞNiNj dx,

MMij ¼

Z h

0

mðxÞxixj dx,

JJij ¼

Z L

0

IðxÞZiZj dx,

Kxxij ¼

Z h

0

KPPðxÞN
0
iN
0
j dx,

Kxrij ¼

Z h

0

KPRðxÞN
0
iN
0
j dx,

Kxpij ¼

Z h

0

KPT ðxÞN
0
iN
0
j dx,

Krrij ¼

Z h

0

KRRðxÞN
0
iN
0
j dx,

Krpij ¼

Z h

0

KTRðxÞN
0
iN
0
j dx,

Kppij ¼

Z h

0

KTT ðxÞN
0
iN
0
j dx,

Kuuij ¼

Z h

0

KVV ðxÞx
0
ix
0
j dx,

Kubij ¼

Z h

0

ðx0iKVBðxÞZ0j þ x0iKVV ðxÞZj þ x0iKRBðxÞZjÞdx,

Kuaij ¼

Z h

0

ðx0iKVAðxÞZ0j þ x0iKRAðxÞZjÞdx,

Kauij ¼ Kuaij ; Kbuij ¼ Kubij,
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Kbbij ¼

Z h

0

ðZ0iKMM ðxÞZ0j þ fZ
0
iZj þ Z0jZigfKVBðxÞ þ KMM ðxÞg

þ ZifKVV ðxÞ þ eKMM ðxÞ þ KRAðxÞgZjÞdx,

Kbaij ¼

Z h

0

fZ0iZj � Z0jZigKVAðxÞdx.

Appendix C. Fiber angle orientation

An attractive feature of the proposed hyperbolic coupling is that its hyperbolic surface can be generated
from a sequence of parallel straight lines (geodesic lines). With this feature the hyperbolic coupling, together
with a fibrous composite shaft, can be readily manufactured into a single unit by using a filament winding
machine. By simply placing the fibers along the geodesic lines of the hyperbola, that is, along lines parallel to
AB in Fig. C.1, a fibrous composite hyperbolic ply is produced.

The fiber angle orientation, yf , this hyperbolic ply is a function of the axial location ðxÞ and can be
computed using the analysis presented below. Let us first introduce some of the pertinent geometric
parameters of the hyperbolic ply (some of these parameters are shown in Fig. C.1):
Fig. C.1.
Dmax
 the maximum diameter of the hyperbola,

Dmin
 the minimum diameter of the hyperbola,

Laxial
 the axial length of the hyperbolic ply (along the axis, x),

Lf
 the fiber’s length ðABÞ.
af
 the sweep angle; that is, the angle to be rotated by one of the coupling’s end as
the fiber AB is being laid down,
g
 the angle between the fiber AB and the axial coordinate, x.
In Fig. C.1, AB represents a single fiber (tow) that is laid down along a geodesic line of the hyperbola.
In addition, the following geometric relations can be deduced from the figure:

af ¼ 2 sin�1ðC=DmaxÞ; bf ¼ ðp� af Þ=2,

g ¼ tan�1ðC=LaxialÞ; Lf ¼ Laxial= cosðgÞ.

The fiber angle orientation, yf , can be obtained from the dot product,

cosðyf Þ ¼ n̂f � n̂s,

where n̂f and n̂s are unit vectors along the fiber direction and the meridian coordinates x, respectively,

n̂f ¼ cosðgÞn̂x þ C cosðbf Þ=Lf n̂r þ C sinðbf Þ=Lf n̂y
Basic geometric parameters of a hyperbolic fibrous composite ply.
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and

n̂s ¼ cosðBÞn̂x þ sinðBÞn̂r.

The unit vectors n̂x, n̂r, and n̂y are measured along the global axial coordinate, x, the radial coordinate, r, and
the tangential coordinate, y, and z is the angle between the meridian and axial coordinates; that is between,
x̄ and x.

The hyperbolic ply is generated by laying down the fibers in lines parallel to the geodesic line AB. In order
for the coupling to efficiently carry the load when the applied torque is reversed, at least another layer of �yf

is needed. The coupling considered in this paper is formed of two plies only, engendering a ½�yf ðxÞ�

fibrous–composite–hyperbolic coupling.

Appendix D. Explanation of the jump phenomenon

To understand the jump phenomenon observed in Fig. 2, an investigation of the smallest 6
axial–radial–torsional natural frequencies of the carbon/epoxy coupling studied in the example of Fig. 2 is
carried out. Based on the mathematical model developed in this paper, Eq. (6), these six natural frequencies
are the first, second, and third radial (Ur1, Ur2, and Ur3), the first and second torsional (Up1, and Up2), and the
first axial ðUx1Þ natural frequencies.

It should be mentioned that because of the full coupling among the axial, radial and torsional vibration,
distinguishing between the different modes of vibration becomes a little ambiguous. In this paper, a specific
mode of vibration (axial, radial, or torsional) is defined when the corresponding displacement pattern
dominates the other two. For example, if all three displacements are experienced at a given natural frequency,
and the axial displacement pattern dominates the other two, the mode shape is defined as the axial mode
shape.
Fig. D.1. Variation of the first six natural frequencies of the coupling with Rmin. & . . .& . . .& 1st natural frequency, x-.-x-.-x 2nd,

o—o—o 3rd, - - - - - - - 4th, yyy5th, ———6th.
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Fig. D.1 displays the above-mentioned first six natural frequencies as functions of Rmin. The inserted texts in
the figure indicate the mode shape associated with each frequency over a given range of Rmin. The eigenvalue
curve veering phenomenon is observed three times:
1.
 At about Rmin ¼ 2:9 in, the fourth and fifth natural frequencies meet and repel each other, and as they repel
each other they swap their respective mode shapes ðUp23Ux1Þ.
2.
 At Rmin ¼ 2:8 in, the fifth and sixth natural frequencies almost collide, repel each other, and exchange their
mode shapes ðUp23Ur3Þ.
3.
 A much smoother curve veering occurs around Rmin ¼ 2:4 in. As the third and fourth natural frequencies
gradually approach each other, they repel each other in the vicinity of Rmin ¼ 2:4 in and gradually depart
from each other. As they depart, they also experience the mode shape swap ðUr23Ux1Þ.

It is the third curve veering (at Rmin ¼ 2:4 inÞ that is responsible for the jump phenomenon observed in Fig. 2.
It occurs as the first axial mode shape Ux1, jumps from the fourth to the third natural frequency.
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