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Abstract

A novel composite coupling is proposed: flexible hyperbolic composite coupling. In addition to enjoying the advantages
of composite materials, the proposed coupling may provide some of the needed damping and can be readily integrated with
a composite drive shaft into a single unit. A mathematical model of the coupling is developed based on the Timoshenko
beam theory using the energy approach and the extended Lagrange’s equations. The corresponding discrete equations of
vibration are derived by using the Galerkin finite element method. The finite element analysis is programmed in MATLAB
and applied to solve for the natural frequencies of the proposed coupling. The dynamic characteristics of the coupling
(axial, torsional and bending natural frequencies) are studied in order to assess the merits and potential of the proposed
coupling.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Flexible couplings transmit torque, while accommodating certain amount of misalignment, from a prime
mover to a driven unit of rotating equipment [1]. Stringent demands are placed on modern flexible couplings,
including: higher torque capacity, higher operational speed (at or post-resonance), accommodation of more
misalignments, less weight and cost. Taking advantages of the unique properties of composite materials (high
specific stiffness and strength, engineering tailoring capability, and high fatigue strength and corrosion
resistance), composite coupling have been introduced in an attempt to achieve the above-mentioned demands
[2,3]. In this paper, a new flexible composite coupling: Hyperbolic Composite Coupling (HCC) is proposed. In
addition to satisfying most of the demands imposed on modern coupling, the proposed coupling can provide
some needed damping [4,5]. Moreover, the HCC can be readily manufactured with a composite drive shaft
into a single integral-coupling-drive-shaft unit [6,7], which enjoys the attractive feature of low manufacturing
and maintenance cost.

The mathematical model of the proposed coupling (HCC) is derived based on the Timoshenko beam
assumptions, using the energy approach and the extended Lagrange’s equations [8]. Then, the discrete
standard equation of vibration ((M]U +[K]U = 0) is derived by using a finite element method. The effect of
two geometric parameters, for two types of fibrous composite materials, on the dynamic characteristics
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(the torsional, bending and axial natural frequencies) of the proposed coupling is studied. Based on this study,
the potential of the proposed coupling is addressed.

2. Mathematical model
2.1. Constitutive equations and kinematics

The model of the flexible coupling is based on Timoshenko beam assumptions. In addition, the circular
cross-sectional area is allowed to axially translate, rotate, and radially expand/contract. That is, the cross-
sectional circular plane remains a circular plane, but not necessarily perpendicular to the axis of the coupling
(first-order shear theory). Consequently, there are seven components of displacement that define the motion of
a point on the cross-sectional area. Based on the inertial coordinates xyz shown in Fig. 1, where the x-axis
coincides with the axis of the un-deformed coupling (dashed line), the four components of displacements that
define the flexural motion of the cross-section of the coupling are: the transverse displacements, u, and u., and
the angular rotation about the y and z axes o and f3, respectively. The other three displacements are: the axial
displacement, u,, angle of twist, ¢, and the radial displacement, u,. It is understood that, for the sake of
illustration, the displacements in Fig. 1 are exaggerated.

In the current analysis, we assume that the through-thickness stress, o, and the tangential (hoop) stress, gy,
are negligible. We also assume that the radial strain component, ¢,, and the inter-laminar shear strain, 7,4, are
negligible. After two sets of coordinate transformation, from material coordinates to the meridian
coordinates, X0z (see Fig. 1), and then to the global inertial cylindrical coordinates [9] x0r, the constitutive
equation for any ply in the laminate of the coupling becomes,
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Fig. 1. Schematic of the different displacements of the hyperbolic coupling.
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For a detailed derivation of the constitutive relation given in Eq. (1), see Appendix A. The strain components
in Eq. (1) are given by
ex = U, — (B'r + pr')cos(0) + (o'r + or’) sin (0),
xo = 19’ + (W + o) cos(0) — (u, — B) sin(0),
Yow = 1+ 0, + 2 sin(6) + (1, — ) cos(6). 2)

The prime in Eq. (2) designates partial derivative with respect to x. Note that r is a function of the axial

coordinate, that is, r = C\/ ((x — Laxial /2)/ d)2 + 1, where ¢ and d are the two geometric parameters defining the
hyperbolic curve. The parameter ¢ is the minimum radius, Rp;,, of the hyperbola.

2.2. Energy expression

The potential energy of the coupling, U, derived using the assumptions introduced in Eq. (1), and where n is
the number of layers (plies), is

L n

1 2nr 0
U= 5/ Z/ / (Oxex + TrxVyy + Tao) )7 drdf dx.
0 =1 J0 ri

Substitute Egs. (1) and (2) into this expression, then after some manipulation, the expression of the coupling’s
potential energy becomes

1 [t — =
U= 2 /0 {Kym(@* + B?) + 2K s (BB + 00 + Kprna (B + o)

+ Ky (. + 0)* + (), — B)*) + 2K yp(o (. + o) — B (1l — B))

+ 2K rp(o(ui, + o) — P, — B)) — 2K ya(B (. + o) + o/ (), — B))

— 2K pa(Bui, + oul,) + Kppii] + K¢ + K grui)?

+ 2K prut,¢" + 2K gru,. ¢’ + 2K prud i)} dx. (3)

The kinetic energy of the coupling is

L n 2nr 0
T:%/ Z/ / p(vi+v§+v§)rdrd0dx.
0 1 0 ri

The x,y and z components of the velocities of a generic point on the shaft are, respectively:

Uy = &{ux —rcosOsin ff + rsinOsina},
vy = %{u}, + rcos 0 cos fi},
v, = %{uz + rsinfcosa}. “4)

Substituting Egs. (4) into the kinetic energy expression, and after some manipulation, we obtain
1 L .2 .2 ) .2 W2 . ;
T:E miy; + iy, + i +u)+1Q2¢, + o+ By)
0
+ 210(é sin fcos o — f3sin o cos f) dx, (5)

where, 0 = Q + ¢, with Q as the spinning speed of the shaft, and is assumed constant. The dot over the letter
signifies differentiation with respect to time, ¢. The expressions for the different stiffness, K, mass, m, and mass
moment of inertia, /, in the potential and kinetic energy expressions can be found in the Appendix B. It is
important to note that, because the radius and the fiber angle orientations vary with x, these stiffness and mass
expressions are functions of the axial coordinate, x.
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2.3. Mathematical model

The partial differential equation governing the dynamics of the HCC is derived from the extended

Lagrange’s equation [9]:
oL o (oL\ @a(oL
—— —— =)= L
34, ax<aq,) az<aq.> 0. O<x<L,

and imposing the boundary conditions: ¢; = 0, or oL /9¢q; = 0 at both ends (x = 0, and x = L). In Lagrange’s
equation and the accompanied boundary conditions, L =T — U, where L is the Lagrangian density, and 7'
and U are the kinetic energy density and the potential energy density, respectively. The generic displacements
q,,i=1,2,...,7, stand for the seven displacement components, which completely define the motion of a point
on the coupling. These displacements are u,,u., ¢, u,,u., f and o. By substituting Eqs. (3) and (5) into
Lagrange’s equation, for each displacement component, we obtain, after some manipulation:

(Kppt,) + (Kprit,) + (Kpr¢') = miiy,

(Kpru) + (Krrtt,) + (Krrd') = mi,,

(Kpril) + (Krril) + (Krrd') =T+ T(p — i+ aB(B — i), 6)

{Kyy(d, — B) — Kypp' — Krpf — Kyao' — Krao)' = miiy,
{Kyy (. + o) + Kypo + Krgot — Kyaf' — KraPY = mii,

{KmmP' + Kvinep — Ky, — B) — Kva(d, + )Y — Ky ' — Kuup
— Kypp' — KRB(u; —2p) — Ky + KRA“; + KVV(u;/ - p)
= I(B — 2Q4 — 25 — ¢pa), )

(Kained + Kano + Kvp(d, + ) = Kya@l, — B)Y — Koo — Kagurr
— Kypo! — Krp(, +20) + Kyaf + Kratt, — Kyy (@, + o)
= I(5+ 208+ 20 + $B),
and the boundary conditions are given by

uy =0 or (Kppu,)+ (Kprit)) + (Kpre') =0,

u =0 or (Kpril)+ (Krrt,) + (Krrd') =0,

¢=0 or (Kpru)+ (Krru,)+ (Krr¢') =0,

u, =0 or {Kyy(u,—p)— Kypp — Krppx — Kyso' — Krqox} =0,

u-=0 or {Kpy(u + o)+ Kype + Krpox — Ky — Krafx} =0,

p=0 or {Kyup + Kump— Kvs, — ) — Kya@, +a)} =0,

x=0 or (Kuymd + Kymo+ Kyp, + o) — Kya(u, — )} = 0. (8)

Egs. (6) and (7) are coupled partial differential equations that represent the axial, radial, torsional and flexural
vibration of the proposed coupling. The axial, radial and torsional Eqs. (6) are completely coupled. The
transverse and rotational motions, of the flexural vibration of the coupling, Eq. (7), are also completely
coupled. Both the axial-radial-torsional vibration, Eq. (6), and the flexural vibration, Eq. (7), are coupled
through nonlinear inertial terms. In the current analysis, these nonlinear inertial terms are ignored, which
uncouples the axial-radial-torsional vibration and the flexural vibration. The coupled equations of motion,
Egs. (6) and (7), subject to the boundary conditions, Eq. (8), constitute the mathematical model of the
proposed coupling. These equations are solved to obtain the fundamental axial, torsional and bending natural
frequencies of the coupling by using Galerkin finite element method coded in MATLAB. The solution is



H. Ghoneim, D.J. Lawrie | Journal of Sound and Vibration 301 (2007) 43-58 47

obtained for the special case where the nonlinear inertial terms and the spin, €, are ignored. The effects of the
nonlinear terms and the spin will be studied in a future work.

2.4. Discrete equation of motion

Over each element the generalized displacements are expanded in terms of the shape functions and the nodal
displacements:

(1) = > N)UG(0), w00 =D Nlx)U,(1),
P(x, 1) =Y Ni(x)Di(2),
w(x, 1) =Y GOV, 0, wx0) =Y &)U (1),

nn

ax, 1) =D (A0, B0 =D n(x)Bi1), ©)

where Uy, U,,®;,U,,U.,A;, and B; are the nodal displacements, and N;(x), £;(x), and #;(x) are the shape
functions. For the current analysis, the cubic Hermite shape functions [10] with nn = 4 are adopted for all
three shape functions.

The element equation,

MeUe + KeU® = be,

where M and K¢ are the element mass and stiffness matrix, respectively, and b® is the boundary force vector, is
derived following the Galerkin finite element method [10]. First, the approximate, expanded solutions of the
seven generalized displacements, Eq. (9), are substituted into the equations of motion, Egs. (6) and (7),
rendering the residuals Ri(R,x, R,, Ry, Ryy, Ryz, Rg and R;). Second, the integrals of the weighted-residual are
enforced to vanish over the element, that is; fé’ wi(x)R;dx = 0, where w;(x) are the weighting functions. In the
Galerkin finite element method these weighting functions are taken as the shape functions: N(x) for Ry, Ry,
and R,; &(x) for R, and R,:; and y(x) for Rp and R,. Finally, the weighted-residual equations are integrated
by part to yield the corresponding weak forms, which upon rearrangement and taking the appropriate
boundary conditions into consideration result in the element equation M*U® + K¢U® = b¢, where

[Mx 0 0 0 0 0 07
0 Mr 0 0 0 0 0
0 0 Mp O 0 0 o0
Mé=| 0 0 0 MM 0 0o 0|,
0 0 0 0 MM 0 0
0 0 0 0 0 JJ 0
| 0 0 0 0 0 0 JJ
and
Ky Ka Ky 0 0 0 0 7
Ky Kp K, 0 0o 0 0
Kg Ko Kp 0 0 0 0
K=|0 0 0 +Ku 0 —Kiy —Kua
0 0 0 0 +Kuw —Kua +Kwp
0 0 0 —Kp —Ka +Kpp —Kpa
| 0 0 0 —Kua +Kpu +Kpa +Kpp |
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Each element of the block matrices M®, and K® is a 4 x 4 matrix, and the expressions of these elements are
given in Appendix B. Notice that, because of the negligence of the nonlinear inertial terms, the
axial-radial-torsional (the top-left 3 x 3 block matrices) and the flexural (the bottom-right 4 x 4 block
matrices) of the stiffness matrix [K]® are uncoupled. It is understood that the discrete equation of motion is
recovered upon the assembly of all element equations.

3. Results and discussion

The finite element program developed for the axial-radial-torsional and flexural vibration of the composite
coupling is applied to determine the fundamental axial, torsional and bending frequencies of specific
couplings. Two generic fibrous composite materials are examined: carbon/epoxy and carbon/polyurethane.
A [£0/(x)] laminate is considered for the coupling, where 0, is the fiber angle orientation. It is a function of the
axial coordinates x, since the fibers are laid down along the geodesic lines of the hyperboloid (Appendix C).
The material properties and dimensions of the two coupling under investigation are given in Table 1. Because
this coupling has been produced in the USA, the unit of length adopted throughout the paper is in an inch
(1in = 2.54cm).

In the flexible composite coupling examples, the carbon fiber and the epoxy are assumed to be elastic, and
the polyurethane (matrix material) is assumed to be viscoelastic with a complex shear modulus. Because of the
large difference in the moduli of the carbon and polyurethane, it is reasonable to assume that only £, and G»;
will demonstrate substantial viscoelastic behavior [11]. Consequently, both £, and G,3 are assumed complex;
that is: E; = E5(1 4 ni) and Ga3 = Gh5(1 + ni). The values of E) and G); are given in Table 1, and a quoted
value of the material damping factor, = 0.1, is adopted [12].

3.1. Carbon/epoxy results

The fundamental axial, torsional and bending natural frequencies as a function of Ry, for the specific case
of Laxia1 = 61n, are displayed in Fig. 2. Also, shown in Fig. 2 are the corresponding finite element results from
ANSYS. For the ANSYS results, a mesh of 16 x 16 (16 circumferential element x16 axial element) shell99
composite elements was adopted. All the results shown are for the cantilevered case, that is, using fixed—free
boundary conditions. The results of the developed finite element program are in close agreement with the
ANSYS results. Initially a stiffening effect is observed in the torsional and bending modes as R, is decreased
from the cylindrical shape (Ryin = Rmax = 3 inches); this is followed by a monotonic softening effect as Ry, is
further decreased. The axial stiffness (natural frequency) continues to drop as Ry, decreases. The jump
phenomenon observed in the axial natural frequency is attributed to the eigenvalue curve veering phenomenon
[13,14], as explained in Appendix D.

The effect of the coupling length (L,yia) and Rpin on the fundamental torsional, bending and axial natural
frequencies of the coupling is displayed, in Fig. 3. In general, the natural frequencies of all three modes
increase as the coupling is shortened (Figs. 3a—), and as Ry, increases (Figs. 3d—f). At small R;,, however,

Table 1
Geometric and material properties of the composite coupling

Material properties Carbon/epoxy Carbon/polyurethene
Maximum radius, cm (in) 7.62 (3) 7.62 (3)

Thickness, mm (in) 0.0508 (0.02) 0.0508 (0.02)

E,, GPa (Msi) 132 (19.2) 131 (19)

E>, GPa (Msi) 10.8 (1.56) 0.21 (0.03)

G2, GPa (Msi) 5.56 (0.82) 0.083 (0.012)

Ga3, GPa (Msi) 3.38 (0.49) 0.028 (0.004)

v12 and vy3 0.24 and 0.59 0.4 and 0.8

p, kg/m® (Ibs*/in*) 1540 (1.44 x 107%) 1475 (1.37 x 107%)
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the bending natural frequency exhibits an optimum value of L, at which a maximum bending frequency
occurs, and below which the bending frequency continues to drop as the coupling gets shorter (Fig. 3b).
A peak torsional (Fig. 3d) as well as bending (Fig. 3e) natural frequency is also depicted as R, approaches
Rpax; that is, as the hyperbolic coupling converges to a cylinder.

3.2. Carbon/polyurethane results

The fundamental axial and bending natural frequencies as a function of Ry,, for the specific case of
Laxial = 61n, are displayed in Fig. 4. Also, shown in the figure are the corresponding results from ANSYS. For
the ANSYS results, a mesh of 16 x 8 (16 circumferential element x 8 axial element) shell99 composite
elements were adopted. All results shown are for the cantilevered case, that is, fixed-free boundary conditions.
As Ry, approaches Ry, and the hyperbolic coupling converges to a cylinder, the flexural natural frequency
predictions exhibit a sharp peak, which is not observed in the ANSYS results (Fig. 4b). Aside form this
discrepancy, the ANSYS and the developed finite element results show “reasonable” agreement. In practice, in
order to achieve the needed axial and flexural flexibility of the coupling, Ry, is confined to values less than
2 in—for Rpy.x = 3in. For this practical range of Rnin (Rmin <21in) there is reasonable agreement between the
results of ANSYS and the developed program (Fig. 4), and consequently the following parametric study is
confined to this range of Ryy.

The effect of the coupling length (L) and Ry, on the fundamental torsional, bending and axial natural
frequencies and the corresponding damping factors of the coupling are demonstrated in Fig. 5. Observe that
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Rpin is confined to values less than 2in. In general, the fundamental natural frequencies of all three modes
increase as Rp,, increases (Figs. 5a—). In the range of L.y, and Ryin covered in this paper, as Ly, decreases,
the torsional natural frequency increases (Fig. 5¢), and the bending and axial natural frequencies increase then
decrease indicating the existence of optimum lengths, L.y, at which a maximum bending frequency and a
maximum axial frequency occur (Figs. 5a,b). This phenomenon is also depicted for carbon/epoxy hyperbolic
couplings (Fig. 3). The effect of Ryin and Ly on the damping factor (Figs. 5d—f), in general, is insignificant.
It should be pointed out that for an effective design of a flexible coupling, a high torsional natural frequency
(stiff in torsion) and a relatively low bending and axial frequencies (flexible in bending and axial deflection)
are required. The results in this preliminary analysis indicate that for Ry, = 1in and L., = lin a high
torsional natural frequency (Fig. 5c) and low bending and axial frequencies (Figs. 5a,b) can be achieved.
The jump phenomenon experienced with the axial and torsional frequencies and the corresponding
discontinuity in the damping factors is attributed to the coupling among the different modes (curve veering) as

explained earlier.

4. Conclusion

A novel coupling is presented: a flexible hyperbolic composite coupling. In addition to enjoying the
advantages of composite materials, the proposed coupling can be readily integrated with composite drive shaft
into a single unit. Moreover, the proposed coupling may provide some of the needed damping. The relevant
dynamic characteristics of the coupling are investigated in this work. Specifically, the effect of two geometric
parameters (minimum radius and axial length) and two carbon fibrous composite materials (carbon/epoxy and
carbon/polyurethane) on the axial, torsional and bending natural frequency of the coupling is studied. These
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three characteristics are relevant because an effective coupling is one that acquires a high torsional natural
frequency (stiff in torsion) and relatively low bending and axial frequencies (flexible in bending and axial
deflection). A mathematical model of the coupling is developed based on the Timoshenko beam theory using
the energy approach. The corresponding discrete equation of vibration are derived by using the Galerkin finite
element method. The finite element analysis is programed in MATLAB and applied to solve for the natural
frequencies of the proposed coupling. The results, in general, indicate that for the proposed coupling to be
viable, small Ry, and axial length, L., are needed. Implementation of the proposed coupling with a
composite shaft into an integrated driveshaft-coupling unit, and a study of the dynamic and strength
characteristics of the integrated unit, is the subject of future work.
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Appendix A. Constitutive equation in global coordinates

53

The constitutive equation of the fibrous composite material in the meridian coordinates of the surface of the

hyperbola can be expressed as

Ox Q1 On O
g9 O 0 O
Oz O35 05 Os
Tyz 0 0 0
Tz 0 0 0
Txy O 0% Os

0 0 Qg /¢
0 0 Oy €
0 0 Qs &
Oy 05 O Vyz
O; Oss O Vxz
0 0 O | \7m

(A.1)

Taking into consideration the assumption that both the through-thickness meridian stress, oz, and the hoop
stress, gy, are negligible, the corresponding strain components ¢ and g can be eliminated from Eq. (A.1),

giving:
Ox @11 0
- | | 0 Qu
Txz N 0 Q45
Tt O 0
where

0 51 6 2
Oy 0 Yoz
Oss 0 Vxz

0 O | \7%

QIZ Q%
Q13 Q36

|

(A.2)

(A.3)

pr— pr— J— J— J— JR— J— — _]
On Qe _ On Qs _ On 0Oi||0n Ox
016 O Q15 Des Oy Qs || Ps O
The stress and strain vectors in Eq. (A.2) can be transformed to global coordinates (x0r), via the following
transformation:
Ox m> 0 2mn 0
Ox
oy w0 —2mn 0
oz
Tro = 0 m 0 —n - s
Txr —mn 0 le — n2 0 *
Tx0
Tx0 0 n 0 m
and
Ex m? 0 mn 0
5
& n” 0 —mn 0
Yoz
Yro | = 0 m 0 —n -
Voxr —2mn 0 m>—n*> 0 y’u
V0 0 n 0 m N
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In Eq. (A.3), m = cos({) and n = sin({), where { is the angle between the global coordinate x and the meridian
coordinate X. Substituting Eq. (A.3) into Eq. (A.2) gives
Oy _Qll O3 Qu 0Ois Q16_ &x
oy Q31 O Qs O3 Qs &r
o | = |Oun Qaz Qu Qus Qus || Vo |» (A.4)
Tar Osi Os3 Qs Oss Ose || 7w
T | Q61 Qs O Qs Oes | \70

where
[0 Qi Qu Ois O]
0y Oy 0y Oss Oy
[01=|0n Qs Ou Qs Ou
051 Os; Osi Oss Qs
L Qs Osn Qu Qs Oss i
m 0 2mn 0

Oy 0 0 O m? n? 0 —mn 0
n? 0 —2mn 0 _ _
0 QOu Ok O 0 0 m 0 0
= 0 m 0 —n _ _
0 Q4 Oss O 2mn —2mn 0 mP—n* 0
—mn 0 m>—n*> 0 ||_ _
O O 0 Qg 0 0 —n 0 m

0 n 0 m

Since we assume that & =y, = 0, they can be removed from the global strain vector together with the
corresponding columns (the second and third) of the stiffness matrix in Eq. (A.4), resulting in the constitutive
relation given in Eq. (1).

Appendix B
B.1. The stiffness and mass expressions

n ~ n 27r ~ . n ~ .
Kpp=) nlrg =110l Kpr=) T-05-m)0Ql. Kpr=)_ nlr5—1})0fs.

=1 =1 =1

n n

" n ~ 2n ~ ~
Krr =) 05— Kra=)_ S03-1)0k Kre=)_ n(5—r)),04%
j=1 j=1 j=1

n n T _
m= Zl g =), 1= Zl pigro =1y, T=21,
J= J=

n

Kyum = Z Z(rg -0l Kww= Z E(V% — )05 + O,
J=1 i

Jj=1

n n

L B N L B N

Kya=Y 305 =1)0Qle Kvp=)_ 3075 -1r),0
j=1 j=1
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Ky = (ﬂhzx/2) Z n(r% — rf)jé‘{l, Ky = 043 Z nln(ro/ri)jéfl,
J=1 J=1

Kra = ()Y mlro — 1),0le.  Krs= (%)Y nlro —1;);0s.
j=1 j=1

B.2. The block mass and stiffness matrices’ components of the finite element analysis
h
Mx; = Mrj = / m(x)N;N;dx,
0

h

Mp; = / I(x)N;N;dx,
0
h

MM =/ m(x)¢;¢;dx,

0

L
11y = [ 1Con d,
0

h
Kxx; = Kpp(x)N;N; dx,
o A

h
Kxrj = / KpR(x)N;N} dx,
0

h
Kxp; = | KPT(x)N;N} dx,

h
Krr,;, = KRR(X)N:NJ/ dX,
0

h
Krp; = A Krr(X)N;N; dx,

h
Kpp;; =/ Krr(x)N;N’ dx,
A .
h
Kuug = | Kyy(x)&& dx,
o .

h
Kuby = / (EK (M, + EK (X + EK ppny) dx,
0

h
Kua; = / (&K ya(m; + EKra(x)n;) dx,
0

Kau; = Kuay, Kbu; = Kuby;,



56 H. Ghoneim, D.J. Lawrie | Journal of Sound and Vibration 301 (2007) 43-58

h
Kbby = / K aaae GO+ b + 1 MK vs(x) + B ()
0

+ 0K pr(x) + Ky (%) + Kra(x)}yy) dx,

h
Kbay; = /0 {77;’7/ - ”Ij/-ni}KVA(x) dx.

Appendix C. Fiber angle orientation

An attractive feature of the proposed hyperbolic coupling is that its hyperbolic surface can be generated
from a sequence of parallel straight lines (geodesic lines). With this feature the hyperbolic coupling, together
with a fibrous composite shaft, can be readily manufactured into a single unit by using a filament winding
machine. By simply placing the fibers along the geodesic lines of the hyperbola, that is, along lines parallel to
AB in Fig. C.1, a fibrous composite hyperbolic ply is produced.

The fiber angle orientation, 0y, this hyperbolic ply is a function of the axial location (x) and can be
computed using the analysis presented below. Let us first introduce some of the pertinent geometric
parameters of the hyperbolic ply (some of these parameters are shown in Fig. C.1):

Dinax the maximum diameter of the hyperbola,

Diin the minimum diameter of the hyperbola,

Laxial the axial length of the hyperbolic ply (along the axis, x),

Ly the fiber’s length (4B).

o the sweep angle; that is, the angle to be rotated by one of the coupling’s end as
the fiber 4B is being laid down,

Y the angle between the fiber AB and the axial coordinate, x.

In Fig. C.1, AB represents a single fiber (tow) that is laid down along a geodesic line of the hyperbola.
In addition, the following geometric relations can be deduced from the figure:

o = ZSin_l(C/Dmax)a ﬁf = (TC B OC]‘)/z,

y=tan ' (C/Luxia1), Ly = Laxial/ cOS(y).
The fiber angle orientation, 0y, can be obtained from the dot product,
cos(0y) = Ay - iy,
where 7, and 7, are unit vectors along the fiber direction and the meridian coordinates X, respectively,
iy = cos(y)ix + Ccos(B,)/ Ly, + Csin(B,)/ Lyt

J/ Dmin

Lmiul

Fig. C.1. Basic geometric parameters of a hyperbolic fibrous composite ply.
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and
Ay = cos(¢)ny + sin(g)n,.

The unit vectors 7, 7, and 71y are measured along the global axial coordinate, x, the radial coordinate, r, and
the tangential coordinate, 6, and { is the angle between the meridian and axial coordinates; that is between,
X and x.

The hyperbolic ply is generated by laying down the fibers in lines parallel to the geodesic line AB. In order
for the coupling to efficiently carry the load when the applied torque is reversed, at least another layer of —0;
is needed. The coupling considered in this paper is formed of two plies only, engendering a [£0(x)]
fibrous—composite—hyperbolic coupling.

Appendix D. Explanation of the jump phenomenon

To understand the jump phenomenon observed in Fig. 2, an investigation of the smallest 6
axial-radial-torsional natural frequencies of the carbon/epoxy coupling studied in the example of Fig. 2 is
carried out. Based on the mathematical model developed in this paper, Eq. (6), these six natural frequencies
are the first, second, and third radial (U,1, U,2, and U,3), the first and second torsional (U, and U);,), and the
first axial (U,;) natural frequencies.

It should be mentioned that because of the full coupling among the axial, radial and torsional vibration,
distinguishing between the different modes of vibration becomes a little ambiguous. In this paper, a specific
mode of vibration (axial, radial, or torsional) is defined when the corresponding displacement pattern
dominates the other two. For example, if all three displacements are experienced at a given natural frequency,
and the axial displacement pattern dominates the other two, the mode shape is defined as the axial mode
shape.

x 10

Fundamental Natural Frequencies (Hz)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 26 2.8 3
Rmin (inch)

Fig. D.1. Variation of the first six natural frequencies of the coupling with Ry,. O ... O ... O Ist natural frequency, x-.-x-.-x 2nd,
0—0—o0 3rd, - ------ 4th, ......... Sth, 6th.
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Fig. D.1 displays the above-mentioned first six natural frequencies as functions of Rpi,. The inserted texts in
the figure indicate the mode shape associated with each frequency over a given range of Ry,. The eigenvalue
curve veering phenomenon is observed three times:

1. At about Ry, = 2.91n, the fourth and fifth natural frequencies meet and repel each other, and as they repel
each other they swap their respective mode shapes (U, < U,y).

2. At Rpin = 2.81n, the fifth and sixth natural frequencies almost collide, repel each other, and exchange their
mode shapes (U, <= U,3).

3. A much smoother curve veering occurs around Ry, = 2.4in. As the third and fourth natural frequencies
gradually approach each other, they repel each other in the vicinity of Ry, = 2.4in and gradually depart
from each other. As they depart, they also experience the mode shape swap (U,, < Uy).

It is the third curve veering (at Ry, = 2.41in) that is responsible for the jump phenomenon observed in Fig. 2.
It occurs as the first axial mode shape Uy, jumps from the fourth to the third natural frequency.
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